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Abstract. A mathematical model of micro-heterogeneous medium is created to investigate how the strength and 

deformational properties of a metal are affected by its grain size. The Hall-Petch relationship is applied with 

consideration to the randomness of grain diameters. Relative damage is determined through the probability of fracture in 

microstructure elements. Macro properties of the metal are calculated as they change due to micro fractures. Stress-strain 

curves are constructed while taking into account the changing microstructural damage at each increment of deformation. 

A comparison is made with experimental diagrams for copper with several average grain diameters. The purpose of this 

article is to create a mathematical model that takes into consideration the influence of the random grain size distribution 

on the deformational and strength properties of the metals.  

INTRODUCTION 

The statistical metallurgy studies effects of random microstructure properties on deformational and strength 

properties of metals [1-3]. The heterogeneity of metal properties at the micro level justifies the use of probability 

theory in calculations. One of the characteristic properties of metal is the connection between its deformational 

properties and the grain size of its microstructure. This interaction is expressed by the relationship of Hall-Petch 

[4,5]. At nano level, a reversed Hall-Petch effect may be observed that means as the average grain diameter 

decreases, the resistance of the metal to rupture and its yield strength also decrease. This particular study 

investigates the level of microstructure at which the effect of Hall-Petch is direct. Microstructure grain diameters 

deviate from their average size. The Hall-Petch relationship will be considered as a function of the random 

microstructure grain diameter.  

Let a model of a micro-heterogeneous medium [1, 2] contain elements of two orders of infinitesimal. Elements at 

the macro level have deterministic mechanical properties. Microstructure elements are second order infinitesimal 

and have random deformational and strength properties. For microstructure elements at points Х = (x1, x2, x3) the 

random Young modulus E(Х), and the deterministic Poisson ratio  are considered. Calculation of macroscopic 

properties of a material as a function of the properties of its microstructure elements is one of the main goals of the 

micro-heterogeneous media theory . Tensor of adjustments h reflecting microstructure elements interaction is added 

to the tensor of average elastic moduli C [1,2]. The adjustment tensor h depends on the moment functions of random 

microstructural elastic moduli. As a result, the adjusted Young's macro modulus E
~

 and the Poisson’s ratio ~  are 

calculated. For calculating of the elastic macro-moduli this article uses the calculation methods developed in the 

article [2]. 

RANDOM DISTRIBUTION OF GRAIN DIAMETERS 

The Hall – Petch relationship [4,5] illustrates the connection between the yield strength of a polycrystalline 

material σy and its grain diameter d: 

mailto:volkovss48@yandex.ru
https://orcid.org/0000-0002-6481-5052


 

d

k
 0y

,      (1) 

where 𝜎0 is a stress required for a dislocation onset in a monocrystalline solid, and k is a constant specific to each 

material. The coefficient k quantifies the growth of the polycrystalline material yield strength with the decreasing 

grain size. Consequently, with increasing grain size the yield strength decreases. A similar relation to the grain size 

is also characteristic to the tensile strength of metals [7].  

The randomness of grain sizes is one of the reasons for heterogeneity in the microstructure properties. Let f(x) be 

defined as a probability distribution density for grain diameter x. Let variable y be the yield strength of 

microstructure grains. Then to find the distribution density g(y), we use equations for probability distribution density 

of a function of a random variable.  

Consider two monotonic mutually inverse functions with parameters a and b: y = φ (x) and x = ψ(y):  
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If the grain diameter x has a normal distribution with expected value m and the standard deviation s, then the 

probability density distribution of the grain tensile strength g (y) is 
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The distribution density of the microstructural strength conditions is used to calculate the microstructure damage. 

THE RELATIONSHIP BETWEEN STRAIN AND STRESS 

The difference between the stress (X) and the random tensile strength S(X) in a grain X = (x1, x2, x3) is defined 

as: w(X) = (X) – S(X). The random function w (X) is a microstructural strength condition. S(X) can also be a yield 

strength depending on the problem setup and requirements. If w (X) ≥ 0, then the stress at the point X is greater than 

the strength; therefore, the element of the microstructure will sustain fracture. If w (X)  0, the fracture does not 

occur since the stress is in the safe range. The methods for calculating the random microstructural stress (X) are 

explored in the article [2]. Here only the deterministic value of the macro stress  will be considered. In the process 

of loading, the stress  increases and the microstructure damage accumulates. The condition for the grain fracture is 

S (X) ≤ . Parameter q defines the damage or the relative number of fractured microstructure elements. Let g () be 

the probability distribution density of the microstructural strength calculated with the Hall – Petch relationship. The 

formula for assessing damage q () under variable stress  takes the following form: 
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Micro-fractures gradually change the elastic macro-modules. The relationship between deformations and stresses 

of the material also changes as a result. 

In the process of loading, the onset and the subsequent accumulation of material damage is observed in a 

structure. The deformation properties of the metal gradually change. The material deformation diagrams are 

significantly affected by the properties of the microstructure [2] including the microstructure grain size. The type of 

probability distribution of random grain size affects the process of the microstructure damage. Considering the 

damage of the microstructure q at each stage of loading, the macro properties of the material are recalculated. New 

properties of the material reflect the equilibrium state to which the microstructure has returned after it sustained 

micro damage. 

Let us calculate the uniaxial tension diagram while taking into account random properties of microstructure 

elements. In the process of loading, the incremental increases of the stress σ are considered. At each (i + 1) step the 

macro deformation εi+1 is determined by the expression that contains the macro module iE
~

, a macro-modulus 

calculated for the damage sustained in the previous step. Using small incremental increases , the integral 

relationship between the strains ε () and stresses  is derived. 
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The diagram is terminated when the critical levels of material loading are exceeded [2]. 

NUMERICAL EXAMPLE 

Let us use a numerical example to find out the influence of the distribution parameters of a random 

microstructure grain size on the relationship between stresses and strains in a metal. Consider the experimental data 

by Bilello and Metzger listed in [8] (Bilello, Metzger, 1969) for tension in five samples of polycrystalline pure 

copper with different grain sizes. The experiments were structured in the context of microplasticity, and the 

nonlinear relationship between small deformations and stresses was studied. The average grain diameters d of the 

samples were 50 μm, 150 μm, and 380 μm. As the samples with a cross section area of 3 mm
2
 were loaded in 

tension, the graphs of the nonlinear relationship between stresses σ (kgf / mm
2
) and strains ε in the (σ ,  ) axes 

were derived for small strains up to ε = 0.002. The coordinates of the experimental graphs for the three average 

grain diameters d are converted from axes (  ∙10
3  

,σ (kgf/mm
2
)) to the axes (ε, σ(MPa)) and gathered in the Table 

1.  

 

σ MPa 4 6 8 10 12 14 16 18 

d = 50 μm  

ε∙10
4
 

0.04 0.2 0.6 1.4 2.9 6.5 10 20 

d = 150 μm 0.01 0.04 0.2 0.6 1.4 3.1 6.8 11 

d = 380 μm 0 0.01 0.06 0.3 0.7 2.1 4.6 9.9 

 

Table 1. The relationship between stresses σ (MPa) and strains ε 

in polycrystalline copper for various average grain diameter d. 

 

Let us calculate the parameters of the Hall-Petch relationship using experimental data. The average value of the 

grain strength S is assumed to be equal to the macroscopic yield strength. This condition usually corresponds to the 

stress reached at the strain ε = 0.002. Based on Table 1 for d = 380 μm obtain S = 18.2 MPa. Through extrapolation 

of the 2
nd

 and the 3
rd

 rows arrive at S = 20.5 MPa for d = 150 μm and S = 22.3 MPa for d = 50 μm. The Hall-Petch 

relationship linearly depends on d 
-0.5

 as S = a + b∙d 
-0.5

. Hall–Petch constants a and b are calculated using three 

points (d 
-0.5

, S) with the method of the ordinary least squares. Fig. 1 shows the resulting Hall – Petch relationship for 

points (0.14, 22.3), (0.082, 20.5), (0.051, 18.2). The resulting relationship is 
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The probability distribution density f (x) of a random grain diameter x can be determined through examination of 

polished specimens of the material [1,3]. This problem has not been addressed in experiments [8]; therefore, let us 

consider some hypotheses about the random characteristics of grain diameters with expected values of 50 μm, 150 

μm, and 380 μm. Let these be the normal distribution with the expected value m and the standard deviation s. Using 

the relationship (6), the corresponding densities (3) of the distribution g(y) of the microstructure grain strength are 

found. With an increase in the expected value of the random strength S, the probability of micro fractures decreases. 

The relative damage, that is also the probability of microstructural fractures, is calculated with the formula (4). Also, 

worth noting that with a smaller variance of the random variable the damage accumulates more slowly, and the 

material withstands higher stresses [2]. 

Let us proceed to the calculation of the relationship between deformation and stress when the Hall-Petch 

relationship for a given material and the distribution parameters of the random grain size are known. Using data 

from Table 1 for an intact material, let the Young's modulus E = 122 GPa. The Poisson's ratio for copper is ν = 0.34. 

Having determined the material damage q(), the adjusted Young's modulus E
~

 is recalculated using the 

functions (3,4) with parameters E, ν, a, b, s, and m. These parameters, as well as the type of distribution of the grain 

size, affect the shape of the stress-strain curve of the material. 

Let us consider three different average values m with the same coefficients of variation 20.0
m

s . Then for m = 

50 μm, m = 150 μm, and m = 380 μm, it is obtained that s = 10 μm, s = 30 μm, and s = 72 μm respectively. Using 



 

formulas (5), the stress-strain diagram for each of the three cases is constructed. Fig. 2 represents the results of the 

calculations. The graphs show the distinctive influence of the microstructure grain size on the relationship between 

stresses and strains under loading. 

 

                    
(1)                                                                      (2) 

FIGURE 1. The relationship between the average microstructure grain strength S and the value of d1  

 where d is the average grain diameter. The dots mark the experimental data. 

FIGURE 2. Stress-strain curves for copper with different average grain diameters d. 

CONCLUSION  

A methodology for constructing a metal deformation diagram with consideration to the grain size of the 

microstructure has been developed. The Hall-Petch relationship is considered as a function of the random grain size 

and is used to calculate the random microstructural strength and the relative damage of the metal. A numerical 

example using experimental data on the deformation of copper with different average grain diameters is given. The 

results show that the shape of the stress-strain curve is influenced by the properties of the microstructure, including 

the probability distribution parameters of its grain size. 
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