
Buckling Analysis of Anisogrid Cylindrical Shell under Thermal Load 

Modern composite materials with a high specific strength and stiffness allow creating space structures with the weight efficiency which is not achievable by their 
metallic analogues. Particularly, the combination of high mechanical properties of composites with the lattice design concept makes it possible to qualitatively 
improve the structural performance of aerospace and satellite elements. The development of composite lattice structures, their design principals and aerospace 
applications are thoroughly described. Analytical, numerical and experimental studies related to mechanical analysis and optimal design of these structures can be 
found in a number of works. Composite structures used in space applications experience large cyclic temperature fluctuations which might result in undesirable 
thermal deformation and buckling leading to functioning degradation. For example, this issue is of primary importance for space telescopes which the main load-
bearing component is usually a thin-walled lattice cylinder. Investigation of buckling resistance is crucial as the buckling failure can occur at the stress level 
significantly less than the compressive strength of materials used.  This study aims to numerically investigate the buckling behavior of anisogrid cylindrical shells with 
two rigidly clamped edges under uniform thermal loading. Finite element modeling is used to assess the critical temperature value depending on the number of 
helical ribs and their orientation angle.  

FIGURE 1. Geometric parameters of the lattice structure 
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FINITE ELEMENT MODEL 
 

The anisogrid lattice of the shell under consideration consists of a repeating symmetrical pattern 
of intersecting circumferential and helical ribs (Fig. 1). Helical ribs are oriented at ±f angle with 
respect to the shell axis and circumferential ribs pass through the midpoints of segments between 
the intersection nodes of helical ribs. The number of helical ribs inclined at the same direction is 
ns. The width of helical and circumferential ribs is denoted as δs and δr, respectively. All ribs have 
the same height h. The elastic moduli of materials of helical and circumferential ribs are Es and Er, 
respectively, and the corresponding coefficients of thermal expansion are αs and αr. 
A three-dimensional numerical model of the anisogrid lattice cylinder is constructed by means of 
the MSC Nastran finite element analysis software [12]. The two-node BEAM finite element (FE) is 
used to represent the ribs. The element has three translational and three rotational degrees of 
freedom per node. The steps to build the cylinder finite element model are shown in Fig 2. First, a 
FE model for the repetitive unit cell of the lattice structure consisting of two segments of 
circumferential and helical ribs is created (Fig. 2a). At this step the unit cell geometry, elastic and 
thermal properties of the rib materials as well as the FE mesh density (element size) are specified. 
By using the periodicity of the lattice structure, the FE model of the whole shell is formed by 
copying the unit cell elements in circumferential and axial directions as shown in Fig. 2b and Fig. 
2c.The computational model is completed by specifying the boundary conditions: a uniform 
temperature rise (from ambient conditions) for all nodes in the model and fully constrained nodes 
at both edges of the shell (Fig. 2d).  

RESULTS AND DISCUSSION 
 

Using the finite element model described above, the critical buckling temperature for anisogrid cylindrical shells with various parameters of the lattice structure 
can be computed. As a practical case, consider the buckling problem of the main load-bearing component of a space telescope, which is the shell having the length 
of 3 m and the diameter of 2 m. Here, the clamped boundary conditions reflect the effect from massive equipment attached to the shell edges.  
The shell is manufactured by carbon filament winding technique. The following parameters are used in calculations: h = 16 mm, s = r = 4 mm, Es = Er = 170 GPa, 
αs = αr = 3.5 · 10-6 1/C°. The helical ribs orientation angle ϕ and the number of ribs ns are the variable parameters in the calculations. The angle ϕ takes values of 
10°, 15°, 20°, 25° and 30°, while ns is 36, 48 and 60. The size of the finite element is 10 mm in all considered cases. The FE model with ϕ = 10° and ns = 36 contains 
the minimum number of finite elements – 25920, while 67320 beam elements are used to model the shell having ϕ = 30° and ns = 60.  

TABLE 2. Buckling mode shapes of anisogrid lattice shells 

ϕ 
Number of helical ribs, ns 

36 48 60 

10° 

   

20° 

   

30° 

   
 

CONCLUSION 
 

The article presents the results of numerical study on the buckling response of the anisogrid lattice cylindrical shells under thermal loading. A parametric finite 
element analysis has been performed to evaluate the influence of the lattice structure parameters on the critical buckling temperature. The critical buckling 
temperature has been found increases with increasing number of helical ribs and their orientation angle with respect to the shell axis. It has been demonstrated 
that after the loss of stability different buckling mode shapes of the shell can be realized depending on the lattice structure.  
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TABLE 1. Critical buckling temperature (C°) 

Helical ribs orientation angle, ϕ  
Number of helical ribs, ns 

36 48 60 

10 386 530 833 

15 739 1115 1410 

20 1213 1907 2475 

30 2632 4425 5620 

 

The computed critical temperatures at which the anisogrid lattice 
cylinder buckles are given in Table 1. As seen from Table 1, the critical 
temperature increases with increasing orientation angle of helical ribs. 
Increasing their number also improves the thermal buckling resistance of 
the shells. It should be mentioned that values of the critical buckling 
temperature well exceed the temperature range that normally occur in 
the spacecraft hull when it is orbiting. Thus, it is hardly possible that 
shells with the given anisogrid lattice structures will loss stability under 
thermal loading from solar radiation. However, the presence of 
additional compressive mechanical loads will decrease the allowable 
operation temperatures. 
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FIGURE 2. Sequence of building the finite element model  


