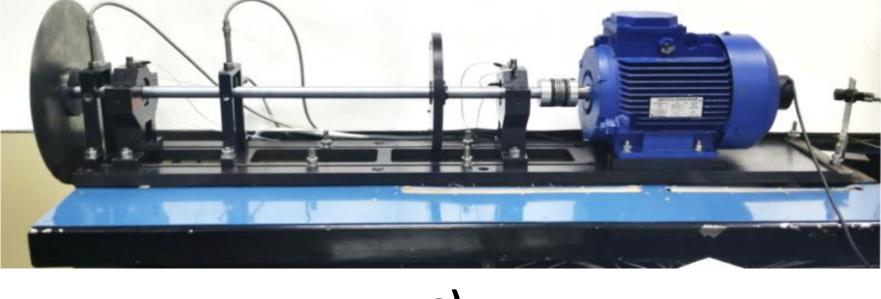


Экспериментальная идентификация математической модели роторной системы для решения задач вибродиагностики

¹Семенов С.В., ¹Нихамкин М.Ш., ¹Саженков Н.А., ¹Балакирев А.А. ¹Пермский национальный исследовательский политехнический университет, кафедра «Авиационные двигатели»

Аннотация


Усложнение конструкции роторных систем к необходимости применения приводит более сложных математических моделей, идентификация которых по результатам стендовых испытаний зачастую только работе предложен метод затруднена. поэлементной идентификации роторных систем, заключающийся в разбиении модели субструктуры с последующей идентификацией модальным характеристикам. Предложенная методика продемонстрирована на примере модельной роторной установки с гибким диском, неосесимметричные формы имеющим колебаний в рабочем диапазоне частот. По определения модальных результатам характеристик предложена методика уточнения математической модели гибкого диска с помощью изменения его модуля упругости.

Методика моделирования

Рисунок 1. Методика создания математической модели роторной системы, подразумевающий использование предварительно верифицированных субструктур

Экспериментальная установка

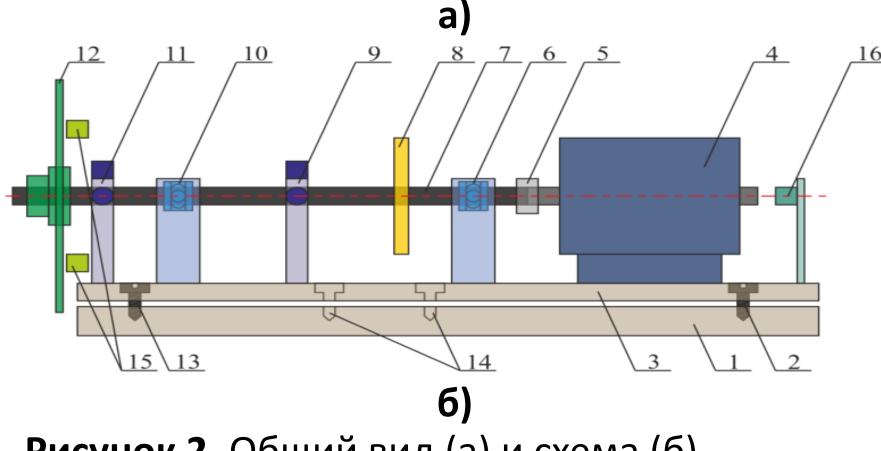
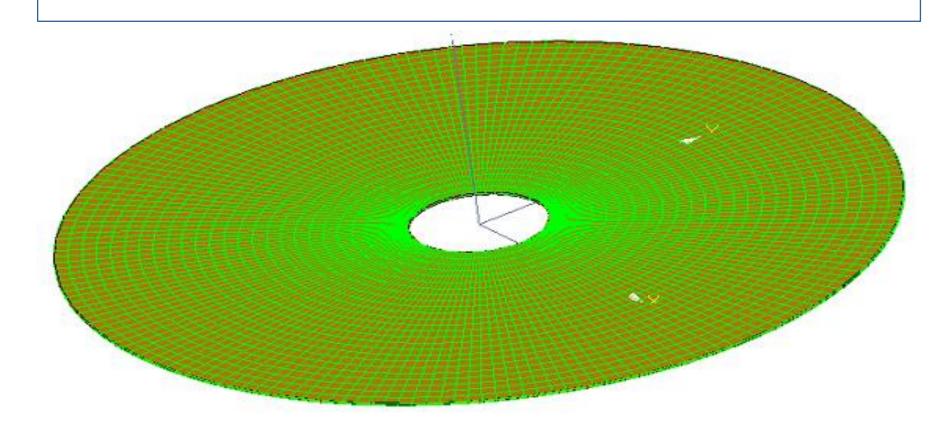



Рисунок 2. Общий вид (а) и схема (б) экспериментальной роторной установки: 1 — рама, 2 — болтовое крепление, 3 — основание, 4 — электродвигатель привода вала НД, 5 — упругая муфта, 6, 10 — корпуса опор ротора НД, 7 — вал НД, 8 — нагрузочный диск ротора НД, 9,11— скобы держатели с вихретоковыми датчиками, 12 — диск, 13 — болтовое крепление, 14 — болтовое крепление, 15 — датчики, регистрирующие виброперемещения диска, 16 — лазерный тахометр. Рабочий диапазон вращения — 0-6000 об/мин.

Создание суперэлемента

В качестве суперэлемента был выбран гибкий Трехмерная конечно-элементная диск. субструктуры гибкого диска модель Конечнорисунке представлена на 4700 модель элементная СОСТОИТ гексаэдров второго порядка (33840 узлов). Начальные параметры материала: ρ=7450 кг/м 3 , E=2,1·10 11 Па. С помощью модального анализа в диапазоне от 0 до 250 Гц были определены 5 собственных форм колебаний (без учета парных).

Рисунок 3. Конечно-элементная модель гибкого диска

Экспериментальная верификация суперэлементов

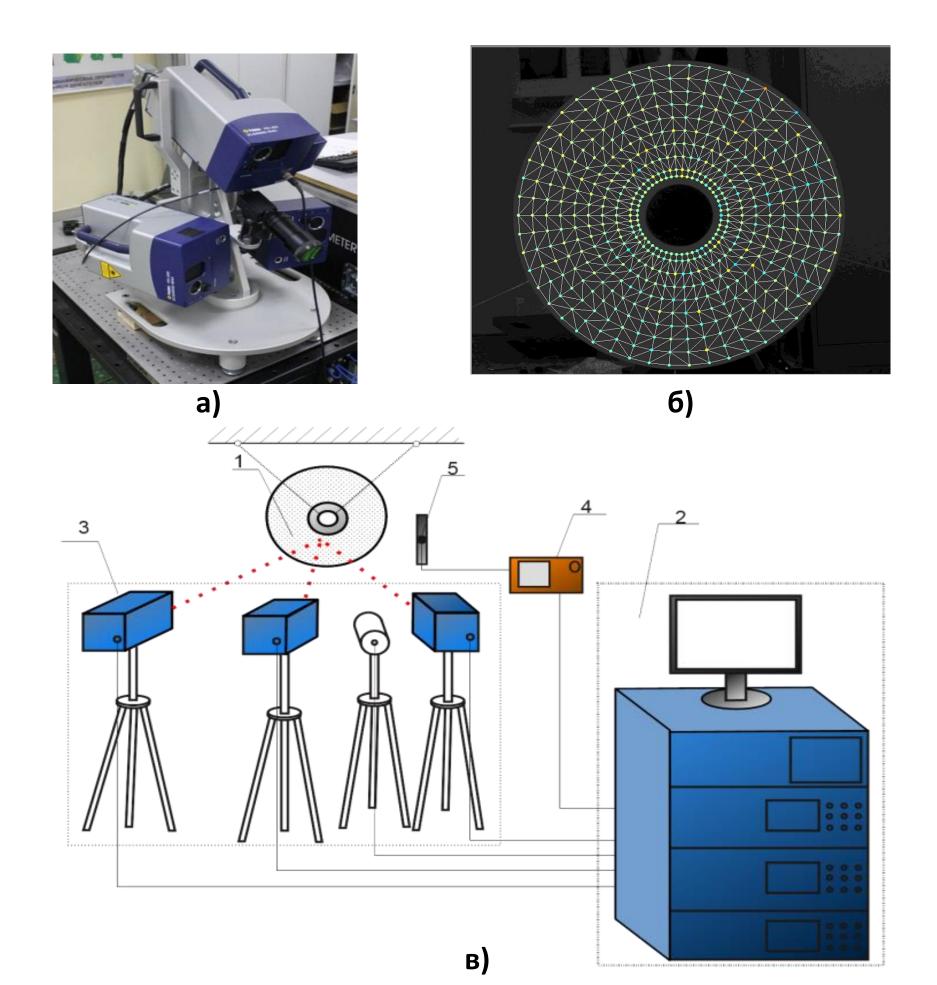
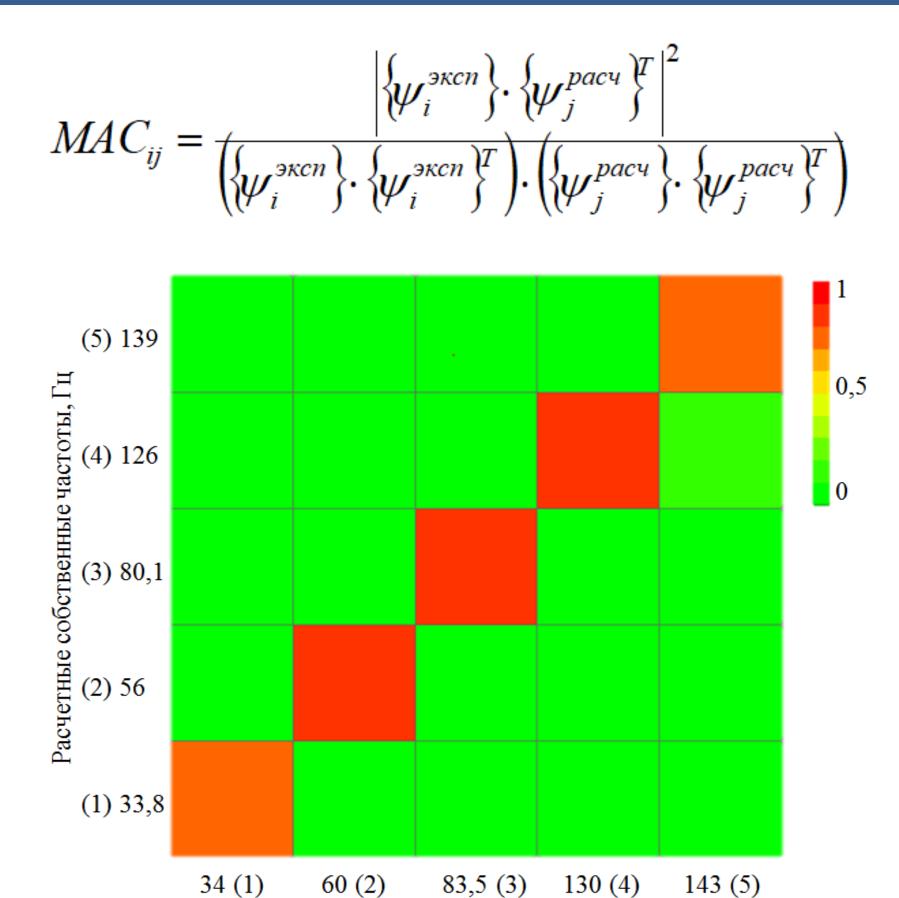



Рисунок 4. Экспериментальный модальный анализ гибкого диска с помощью трехкомпонентного сканирующего виброметра (а — лазерные головки виброметра, б — сетка сканирования, в — схема экспериментальной установки (1— объект исследования, 2,3 — трехкомпонентный сканирующий виброметр и его система управления, 4 — усилитель, 5 — акустический возбудитель)

Для жесткости исключения влияния крепления, в качестве граничных условий при свободные расчете использовались были граничные условия, которые реализованы в эксперименте с помощью эластичного подвеса. Сетка сканирования состояла из 500 узлов. Разрешение – 0.5 Гц. В результате экспериментального модального анализа были определены первые пять собственных частот диска (до 250 Гц) и сопоставлены с частотами, полученными расчетным способом. Сравнение форм колебаний осуществлялось с помощью МАСкритерия

Рисунок 5. МАС- матрица для собственных частот диска, полученных расчетным и экспериментальным способами

Экспериментальные собственные частоты, Гц

Экспериментальная идентификация модели суперэлемента

Собственные частоты диска, полученные экспериментальным и расчетным способом

о р м	т – количество узловых окружностей, п – количество узловых диаметров	Час тота экс п, Гц	Часто та расче тная (E=2,1 ∙10 ¹¹ Па)	хож ден ие,	я после	ение
1	m=0; n=2	34	33,8	0,59	34,6	1,76
2	m=1; n=0	60	56	6,67	57	5,00
3	m=0; n=3	83,5	80	4,19	81,6	2,28
4	m=2; n=1	130	126	3,08	133	2,31
5	m=0; n=4	143	139	2,80	143	0,00

Выводы

работе предложена методика поэлементной идентификации таких разбиении моделей, заключающаяся модели на субструктуры и последующей их идентификации ПО модальным Методика характеристикам. продемонстрирована примере на идентификации гибкого диска, создающего формы колебаний в неосесимметричные рабочем диапазоне модельной частот установки. Модальные характеристики диска определены помощью конечноэлементного расчета и экспериментального анализа, модального осуществленного с лазерной виброметрии. помощью результатам определения модальных характеристик предложена методика уточнения математической модели гибкого диска с помощью изменения его модуля упругости. Предложенная методика может использоваться уточнения ДЛЯ математических моделей роторных систем, в том числе и применяющихся для диагностики опасных вибрационных явлений.